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Preface

Perfection is achieved, not when there is nothing more to add, but when there
is nothing left to take away.

- Antoine de Saint Exupery

DEVS++ is an open source library that is an implementation of discrete
event system specification (DEVS) formalism in C++ language. More than 30
years ago, Dr. Zeigler introduced DEVS to the public through his first book
[Zei76], and its second edition [ZPK00] became available in 2000 due to the help
of other two authors, Dr. Praehofer and Dr. Kim.

In 1994 when I was a Ph.D. student at the Korea Advanced Institute of
Science and Engineering (KAIST), I was taught the DEVS theory by Dr. Kim
who had been taught it by Dr. Zeigler. At that time, Dr. Kim used a C++
library, called DEVSim++ c© [Kim94] in one of his courses. I became fascinated
with it even at the first glance because I had been struggling with developing
a simulator without any theory for a while. DEVSim++ was so neat and well-
organized as is DEVS inherently.

After seeing the header files of DEVSim++, I developed several versions
of DEVS-based C++ kernels. One of them has been used in the VMS Lab.,
directed by Dr. Byoung Kyu Choi, IE Dept. at KAIST, and some of them are
used in commercial packages of Cubiteck Ltd. Co., Seoul, Korea.

I had a chance to meet Dr. Ziegler in the DEVS standardization session of
the 2005 DEVS Symposium. At that time, Dr. Zeigler suggested that I open my
C++ DEVS library (called DEVS++), and I accepted his suggestion. I released
the implementation as an open source project at http://odevspp.sourceforge.net
in 2005. However, I were not able to finish writing its user manual over a couple
years. Finally, the first version of the DEVS++ manual was released in May,
2007 when DEVS++ has evolved up to version 1.4.1.

The main objective of this document is to introduce the DEVS++ library.
Since it is a C++ implementation of DEVS formalism, we need to understand
what DEVS is first. Chapter 1 provides a belief review of DEVS formalism by
introducing DEVS structures and their behaviors. Chapter 1 also gives sample
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codes for a ping-pong game using DEVS++ so we can see what the DEVS++
codes look like.

Chapter 2 explains the DEVS++ Library in terms of the object oriented
programming paradigm of C++. We will see the class hierarchy and some of
the virtual functions the user is supposed to override to make a concrete class.
In addition, this section introduces a menu that DEVS++ provides when we
run DEVS++ from a console.

Chapter 3 demonstrates several simple examples from atomic DEVS models
to a coupled DEVS network. In these examples, we can check the knowledge
learned from the previous chapters.

Chapter 4 deals with one of major goals of simulation study, that is, how
to measure some performance indices. To do this, the mathematical definitions
of throughput, cycle time, utilization and average queue length are addressed
first, then their implementations in DEVS++ are introduced using practical
examples. I hope the readers will have insight to modify these simple examples
for their own purposes.

In addition to these main chapters, there are two appendixes. Appendix
A explains how to build DEVS++ library from its source codes. Appendix B
summaries the revision history and development plans of DEVS++.
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Chapter 1

DEVS Formalism and

DEVS++ code

In DEVS formalism the time base denoted by T, is the non-negative real num-
bers, i.e. T = [0,∞). Even though time can not reach the transfinite number,
infinity (∞), sometimes it is useful to include ∞ in our consideration so we use
the extend set, denoted by T∞ = [0,∞].

This chapter introduces DEVS formalism in terms of the atomic DEVS to
define the dynamic behavior, and the coupled DEVS to build the hierarchical
network structure.

1.1 Atomic DEVS

An atomic DEVS model is defined by a 7-tuple structure

A =< X,Y, S, s0, τ, δx, δy >

where

• X is a set of input events.

• Y is a set of output events.

• S is a set of partial states.

• s0 ∈ S is the initial partial state.

• τ : S → T∞ is the time advance function. This function is used to
determine the lifespan of a state.
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Figure 1.1: Symmetric Structure of Atomic DEVS

• δx : Q×X → S × {0, 1} is the external transition function where

Q = {(s, ts, te)|s ∈ S, ts ∈ T∞, te ∈ (T ∩ [0, ts])}

is the set of total states where ts and te are the lifespan of the state, s, and
the elapsed time since last reset of te, respectively. δx(s, ts, te) = (s′, b)
defines how an input event, x, changes the state, s, as well as the lifespan,
ts, and the elapsed time, te.

• δy : S → Y × S is the output and internal transition function that de-
fines how a state generates an output event and, at the same time, how
it changes the state internally. This function can be invoked when the
elapsed time reaches the lifespan. 1

¥

Figure 1.1, also used as the cover illustration, shows the symmetric structure
of DEVS in the sense that the input event set (X) and the external transition
function (δx) are on the input side; the output event set (Y ) and the output
and internal transition function (δy) are on the output side; and a set of states
(S) and its time advance function (τ) are in the middle.

Definition 1.1 (Deterministic and Nondeterministic Functions) Let A

and B be two arbitrary sets. Then function f : A → B is called deterministic
if give an a ∈ A, the values of callings f(a) at different times are identical.
Otherwise, f is called non-deterministic. ¤

Definition 1.2 (Deterministic and Nondeterministic DEVSs) A DEVS
model, M , is called deterministic if s0, τ, δx, and δy are deterministic. Other-
wise, M is called non-deterministic. ¤

1In [ZPK00], δy is split into two functions: the output function λ : S → Y and the internal

transition function δint : S → S.
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Behavior of Atomic DEVS models

Suppose that A =< X, Y, S, s0, τ, δx, δy >is an atomic DEVS model. Then
behavior of A is a sequence of total state transitions

(s, ts, te) → (s′, t′s, t
′
e)

where total states (s, ts, te) and (s′, t′s, t
′
e) ∈ Q are respectively defined at time

tl, tu ∈ T such that tl ≤ tu in the following three different cases.

1. Change by Time Passage If there is no event until time tu,

(a) (s′ = s) ∧ (t′s = ts), i.e, partial states and life spans are preserved,
but

(b) the new elapsed time increases such that t′e = te + tu − tl.

We call move q to q′ total state change by time passage.

2. Change by an external transition When A receives an input event
x ∈ X,

(a) (s′, τ(s′), 0) if δx(q, x) = (s′, 1),

(b) (s, ts, te) if δx(q, x) = (s′, 0).

3. Change by an internal transition If there is no input event when te
reaches at ts,2 then new state is defined as (s′, τ(s′), 0) if δy(s) = (y, s′).

For a formal definition of atomic DEVS behaviors, readers can refer to
[DEV08a].

Example 1.1 (Ping-Pong Player) Figure 1.2 shows an atomic DEVS model
for a ping-pong player. This model has an input event “?receive” and an output
event “!send”. And it has two states: “Send” and “Wait”. Once the player gets
into “Send”, it will generates “!send” and backs to “Wait” after the sending
time which is a random variant in the uniform probability distribution function
(pdf) of [0.1, 1.2]. When staying at “Wait” and if it gets “?receive”, it changes
into “Send” again.

Formally we can rewrite this player as MPlayer =< X,Y, S, s0, τ, δx, δy >

where X={?receive}; Y ={!send};S={Send, Wait}; s0=Send; τ(Send)∈ [0.1,
1.2], τ(Wait)=∞; δx(s, ts, te, x) = δx(Send,∞,[0,ts],?receive) =(Send,1),
δx(s, ts, te, x) = δx(Send,[0.1, 1.2],[0,ts],?receive)=(Send,0);
δy(s) = δy(Send)=(!send,Wait);

Notice that this player model is not deterministic because the lifespan value
of Send decided by τ(Send) is uniformly distributed in the interval of [0.1, 1.2].

¤
2Recall that te ∈ T = [0,∞) and ts can be ∞. Thus when ts = ∞, it is impossible that

te = ts.



4 DEVS Formalism and DEVS++ code

Figure 1.2: State Transition Diagram of Ping-Pong Player

1.2 Coupled DEVS

The coupled DEVS provides the hierarchical and modular structure necessary
to describe system networks. Formally, a coupled DEVS is defined by

N =< X, Y,D, {Mi}, EIC, ITC, EOC >

where

• X is a set of input events.

• Y is a set of output events.

• D is a set of names of sub-components

• {Mi} is a set of DEVS models where i ∈ D. Mi can be either an atomic
DEVS model or a coupled DEVS model.

• EIC ⊆ X × ⋃
i∈D

Xi is a set of external input couplings where Xi is the set

of input events of Mi.

• ITC ⊆ ⋃
i∈D

Yi ×
⋃

i∈D

Xi is a set of internal couplings where Yi is the set of

output events of Mi.

• EOC ⊆ ⋃
i∈D

Yi × Y is a set of external output couplings. ¥

Practically, we can see an event as a pair of (port, value) and the coupling
as a pair of (portsource, portdestination) [Zei90, ZPK00]. The basic assump-
tion of the port coupling is that the value of portsource is casted to that of
portdestination. We can find that the realistic example of the port coupling in
the VHDL language [Ska96] and the language of programmable logic controller
(PLC) [Lew98]. DEVS++ implements the (port,value) view for events (we will
see it in Section 2.1.4). However, it does not mean that the event should be a
pair of a port and a value.
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Figure 1.3: DEVS Model of Ping-Pong Game

Behavior of Coupled DEVS models

The coupled DEVS’s behavior is described verbally as follows.

1. Change by Time Passage If there are no events in time duration tl to
tu(tl ≤ tu), all sub-components’ total states are changed by time passage
of dt = tu − tl.

2. Change by an external transition When N receives an input event, the
coupled DEVS transmits the input event to the sub-components through
the set of external input couplings.

3. Change by an internal transition When a sub-component produces
its output event when the internal transition occurs, the coupled DEVS
transmits the output event to the other sub-components through the set
of internal couplings. The coupled DEVS also produces an output event
of N through the set of external output couplings.

Theoretically speaking, DEVS is closed under the coupling which means that
the behavior of any coupled DEVS model can be explained by an atomic DEVS
model.[ZPK00]. For a formal definition of coupled DEVS behaviors, readers can
refer to [DEV08b].

Example 1.2 (Ping-Pong Game) Consider a ping-pong game with two play-
ers that each represented by the Player model introduced in Example 1.1 except
the initial state.

This block diagram can be modeled by a coupled DEVS such as NPPGame =<

X, Y,D, {Mi}, EIC, ITC,EOC > where X = {}; Y = {};D={A,B}; {Mi} ={Playeri}
where Playeri is the atomic DEVS introduced in Example 1.1 with initial
states Send for i=A, Wait for i=B, respectively; EIC={ }, ITC={ (A.!send,
B.?receive), (B.!send, A.?receive)}, EOC = { }. ¤
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1.3 Building Ping-Pong Game using DEVS++

This section shows how DEVS++ codes look like using the ping-pong game intro-
duced in Example 1.2. All source codes below are available in DEVSpp/Examples/Ex_PinPong

folder. If you want to build and run this example by yourself, Appendix A will
be helpful for you.

#include "Atomic.h" //--- (1)

#include "Coupled.h"

#include "SRTEngine.h"

#include "RNG.h"

#include <iostream>

#include <math.h>

using namespace std;

using namespace DEVSpp; //--- (2)

const string WAIT = "Wait";

const string SEND = "Send";

//---- definition of atomic DEVS for Player --- (3)

class Player: public Atomic {

public:

OutputPort* send; //-- associated ports --- (4)

InputPort* receive;

protected: //-- associated internal state variables ----(5)

string m_phase;

bool m_width_ball;

public:

Player(const string& name="", bool with_ball=false): Atomic(name),

m_phase(WAIT), m_width_ball(with_ball)

{

send = AddOP("send"); //--- add ports --- (6)

receive = AddIP("receive");

}

//---- four characteristic functions ------- (7)

/*virtual*/ void init()

{

if(m_width_ball)

m_phase = SEND;

else

m_phase = WAIT;
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}

/*virtual*/ TimeSpan tau() const

{

static rv urv;

if(m_phase == SEND)

return urv.uniform(0.1, 1.2); //---- (8)

else

return DBL_MAX;

}

/*virtual*/ bool delta_x(const PortValue& x)

{

if(x.port == receive)

{

if(m_phase == WAIT) {

m_phase = SEND;

return true;

}

}

return false;

}

/*virtual*/ void delta_y(PortValue& y)

{

if(m_phase == SEND) {

y.Set(send);

m_phase = WAIT;

}

}

//------ end of four characteristic functions -------

/*virtual*/ string Get_s() const //------(9)

{

return m_phase;

}

};

Coupled* MakePingPongGame(const string& name) {

Coupled* PingPong = new Coupled(name);// ----(10)

Player* A = new Player("A", true); //--- (11)

Player* B = new Player("B", false);
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A->CollectStatistics(true); //-- (12)

B->CollectStatistics(true);

PingPong->AddModel(A); //-- (13)

PingPong->AddModel(B);

//-- Internal Coupling -------- (14)

PingPong->AddCP(A->send, B->receive);

PingPong->AddCP(B->send, A->receive);

PingPong->PrintCouplings(); //---- (15)

return PingPong;

}

void main(void) {

Coupled* PingPong = MakePingPongGame("PingPong");

SRTEngine simEngine(*PingPong);//-- (16)

simEngine.RunConsoleMenu(); //-- (17)

delete PingPong;

}

Above example codes contain comments in the forms of
“//--- (#)”. Each “(#)” has the following explanation.

(1) Include Files

First of all, we should include the associated header files. In this example, we
define the class Player derived from the class Atomic (Atomic.h); we create
a ping-pong game as an instance of the class Coupled (Coupled.h); we will
simulate the ping-pong game using a scalable simulation engine: SRTEngine

(SRTEngine.h); and the time advance of the state Send is a random variable of
the uniform pdf (RNG.h).

(2) Using Name Space

For convenience, we use the name space “DEVSpp” as well as “std”. Without
this, we should add a scope operator like DEVSpp:: or std:: in front of all
classes and global APIs that are defined in DEVSpp and std.

(3) Player derived from Atomic

In this example, Player is a concrete class derived from Atomic which is an
abstract class. We will see the class Atomic in Section 2.2.2.
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(4) Interfacing Ports

The port pointers are useful to identify the added ports. Without these pointers,
we would have to search for each pointer by its name, and that can be a burden.
For more information of the class Port, the reader can refer to Section 2.1.2

(5) State Variables

The derived and concrete class of atomic DEVS will have its state variables to
describe its dynamic situations. In DEVS++, we use member data of C++ for
the state variables.

(6) Adding Interfacing Ports

The interfacing port pointers mentioned in (5) are assigned by calling either the
AddIP or the AddOP function in which memory allocations and parent assign-
ments are performed. A set of port related functions defined at Atomic can be
referred to Section 2.2.2.

(7) Defining Four Characteristic Functions

The characteristic functions such as τ, δx, δy plus init() are pure virtual, and
so we should override them when defining a concrete class of Atomic. These
characteristic functions describe the behavior of the state transition diagram of
Figure 1.3.

(8) Random Number

The lifespan of Send is a random variable with uniform pdf of [0.1,1.2], where
elements of the domain denote time-units. To generate the random number, the
random variable class rv is used as a static local variable for the output of the
function tau(). The pdfs available in DEVS++ are addressed in Section 2.4.

(9) Displaying the current state

To show the current state, we will override the Get_s() function which is sup-
posed to return the current state in a string.

(10) Making the Ping-Pong Game

We make an instance of coupled DEVS for the ping-pong game.

(11) Creating Two Players

The ping-pong game has two sub-components that are instances of Player hav-
ing different initial states.
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(12) Collecting Statistics

If we want to collect statistics about the two players, we turn the flag on by
calling CollectStatistics(true). Chapter 4 will introduce performance mea-
sures and how we can collect statistics in detail.

(13) Adding Sub-components

We add two players A and B by calling the function AddModel of the class
Coupled.

(14) Adding Couplings

We add couplings between players A and B calling the function AddCP of the
class Coupled .

(15) Print Couplings

Even though it is not necessary, we can call the function PrintCouplings() of
Coupled to check the coupling status. The couplings of the ping-pong game are
displayed as follows.

Inside of PingPong

-- External Input Coupling (EIC) --

------ # of EICs: 0-----

-- Internal Coupling (ITC) --

A.send --> B.receive

B.send --> A.receive

------ # of ITCs: 2-----

-- External Output Coupling (EOC) --

------ # of EOCs: 0-----

(16) Making a simulation engine

Instancing a scalable simulation engine SRTEngine can be done by calling its
constructor that needs the model supposed to be simulated. In this example
the model is the coupled model of the ping-pong game.

(17) Running the console menu

We can use the console menu of SRTEngine by calling RunConsoleMenu(). After
that, we will see the following screen on the selected console.
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DEVS++: C++ Open Source of DEVS Implementation, (C) 2005~2009,

http://odevspp.sourceforge.net

The current date is 04/09/09

The current time is 11:42:26

scale, step, run, mrun, [p]ause, pause_at, [c]ontinue, reset,

rerun, [i]nject, dtmode, animode, print, cls, log, [e]xit

>

The first part shows the header of DEVS++ and current data and time.
The second part shows the available command set. Even we don’t have clear
idea of each command, let’s try“ run” and then “exit”.

The detailed information of each command will be provided in Section 2.3.





Chapter 2

Structure of DEVS++

DEVS++ is an C++ open source of DEVS formalism. Thus, there are two
features: one comes from C++ language, the other from the formalism. Figure
2.1 shows the hierarchy relation among classes used in DEVS++.

As we reviewed in Chapter 1, two DEVS models called atomic DEVS and
coupled DEVS have common features such as input and output event interfaces
as well as time features such as current time, elapsed time, schedule time and
so on. In DEVS++, these common features have been captured by a base
class, called Devs from which the class Atomic (for atomic DEVS) and the class
Coupled (for coupled DEVS) are derived.

In DEVS++, an event is a pair of (port, value) where port can be an instance
of either InputPort class or OutputPort class, while value is an instance of
a derived class of Value class such as bValue and tmValue. SRTEngine is a
scalable real-time engine which runs a DEVS instance inside. rv is a class for a
random variable.

In Figure 2.1, a gray box indicates a concrete class which can be created as
an instance, while a white box is an abstract class which can not be created as

Figure 2.1: Classes in DEVS++
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an instance.
We will first go through the PortValue class and its related classes in Section

2.1. Next, Devs class and its derived two classes: Atomic and Coupled will be
investigated in Section 2.2, Section 2.3 will introduce a simulation engine class,
called SRTEngine. And finally, We will see the random number generator rv in
Section 2.4.

2.1 Event=PortValue

An event will be modeled by an instance of PortValue class which is a pair of
Port and Value. We will first see the top-most base class, called “Named”. Then
we will look at Port-related classes and Value-related classes. And finally, the
PortValue class will be seen in the last part of this section.

2.1.1 Named

Named is defined in a header file Named.h as a concrete class. The class provides
its constructor whose argument is a string, and has a public Name field as a
string.

class Named {

public:

Named(const string& name):Name(name){}

string Name;

};

2.1.2 Port, InputPort, and OutputPort

The Port.h file defines three classes Port, InputPort and OutputPort as fol-
lows.

class Port: public Named {

public:

Devs* Parent;

vector<Port*> ToP; // Successor

vector<Port*> FromP; // Predecessor

...

};

class InputPort: public Port {

...

};



2.1 Event=PortValue 15

class OutputPort: public Port {

...

};

Port is an abstract class derived from Named. It has a parent pointer whose type
is Devs pointer and which is automatically assigned when we call the AddIP()

and AddOP() functions of Devs. Port has “vector<Port*> ToP” as a set of
successors as well as “vector<Port*> FromP” as a set of predecessors which
are changed when we call AddCP() and RemoveCP() of Coupled.

InputPort and OutputPort are concrete and derived classes from Port.

2.1.3 Value, bValue and tmValue

In Value.h, there are three classes: Value, bValue and tmValue. Value is the
base abstract class for the other two classes. Value has two virtual functions:
Clone() makes a copy, STR() returns a string of a derived class’s status.

class Value {

protected:

Value(){}

public:

virtual Value* Clone() const {return NULL;}

virtual string STR() const {return string(); }

};

bValue is a concrete class derived from Value. bValue is a template class,
and it has a field v whose type is the template augment V. Thus we can de-
fine bValue<bool>, bValue<char>, bValue<int>, bValue<double> whose value
types are bool, char, int, and double, respectively.

template<class V>

class bValue: public Value {

public:

V v; //-- public value field

...

};

tmValue is a concrete class derived from Value. This class has a map from
a string to a double-precision floating number that can be used to identify an
event as a string and to specify its occurrence time.

class tmValue: public Value {

public:

map<string, double> TimeMap;
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...

};

You can see how to use this tmValue in Section 4.2.1 and 4.3.

2.1.4 PortValue

As mentioned before, an event in DEVS++ is modeled by a pair of associated
classes: Port and Value by using the PortValue class.

class PortValue {

public:

Port* port; //-- either an output port or an input port

Value* value;//-- typecast it to a concrete derived class!

PortValue(const Port* p=NULL, Value* v=NULL);

...

};

2.2 DEVS

As introduced in Chapter 1, DEVS has two basic structures: atomic DEVS
and coupled DEVS. In DEVS++, these two structures are implemented as the
classes Atomic and Coupled, respectively, and are derived from the base class
Devs. Thus Devs has the common member data and functions of both Atomic

and Coupled.

2.2.1 Base DEVS: Devs

Devs defined in Devs.h is an abstract class derived from Named.1 And it has
the parent pointer assigned by AddModel() of Coupled as we will see in Section
2.2.3.

class DEVSpp_EXP Devs: public Named {

public:

Coupled* Parent; // parent pointer

...

There are adding, getting, removing, and printing functions for the input
ports denoted as AddIP, GetIP, RemoveIP, and PrintAllIPs. Similarly, AddOP,
GetOP, RemoveOP, and PrintAllOPs are available functions for the output ports.

1The macro DEVSpp EXP can be compiled several different ways according to the set of

preprocessor. For compiling dynamic linking library, we should add DLL in the preprocessor

definitions. For more information, the reader can refer to Chapter A.
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Figure 2.2: Relations of Times

//-- Input Port related functions --

InputPort* AddIP(const string& ipn);

InputPort* GetIP(const string& ipn) const;

InputPort* RemoveIP(const string& ipn);

void PrintAllIPs() const;

//-- Output Port related functions --

OutputPort* AddOP(const string& opn);

OutputPort* GetOP(const string& opn) const;

OutputPort* RemoveOP(const string& opn);

void PrintAllOPs() const;

Implementations of Times

Recall that the behavior of DEVS needs times notions, lifespan ts and elapsed
time te (see section 2.2.2). To capture these two times, DEVS++ implements
two other time notions: last event time tl and next event time tn instead. If we
have a current time, tc, relationships among them are

ts = tn − tl,

te = tc − tl

and
tr = ts − te = tn − tc

where tr is remaining time to tn. Figure 2.2 illustrates the relationships among
these times.

The user doesn’t have to set the values of times during simulation since that
will be done by DEVS++. However, if users need to access the values of them,
there are following APIs defined at Devs class :
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Time TimeLast() const;

Time TimeNext() const ;

Time TimeLifespan() const ;

static Time TimeCurrent() ;

Time TimeElapsed() const ;

Time TimeRemaining() const ;

Notice that TimeCurrent() is a static function which means that all DEVS in-
stances will have the same value of TimeCurrent(), while they can have different
values for TimeLast(), TimeNext(), etc.

2.2.2 Atomic DEVS: Atomic

The atomic DEVS is implemented as Atomic in the files of Atomic.h and
Atomic.cpp. Atomic is an abstract class that is derived from the abstract base
class Devs.

class DEVSpp_EXP Atomic: public Devs {

protected:

Atomic(const string& name): Devs(name), m_cs(false) {}

...

Characteristic Functions

There are four public characteristic functions that are pure virtual. Thus the
user must override them to define a concrete class from Atomic.

The function init() is used when the model needs to be reset, such as in
the case of an initialization for a simulation run.

virtual void init() = 0;

The function tau() returns the lifespan of the current state.

virtual TimeSpan tau() const = 0;

The function delta_x(const_PortValue& x) defines the input state transi-
tion caused by an input event x. The return value true indicates that the next
schedule needs to be updated by calling tau(). Contrarily, the return value
false indicates that the time for the next schedule needs to be preserved.

virtual bool delta_x(const PortValue& x) = 0;

The function delta_y(PortValue& y) defines the output transition by gen-
erating an output event y. Recall that the schedule will be updated right after
this occurs, based upon the value of tau().

virtual void delta_y(PortValue& y) = 0;
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Displaying State as a string

There is an other public virtual(but not pure) function Get_s(), that will return
the current status in a string for display purposes.

virtual string Get_s() const { return string();}

Collecting Performance Functions

If we want to trace the performance of an atomic DEVS model, we need to set the
flag on by using CollectStatistics(true). We can also get the flag’s status by
calling CollectStatisticsFlag(). The virtual function Get_Statistics_s()

will return a string which represents the status in terms of collecting statis-
tics. Also, the user can override the GetPerformance() function to collect the
performance index.

void CollectStatistics(bool flag = true) { m_cs = flag; }

bool CollectStatisticsFlag() const { return m_cs; }

virtual string Get_Statistics_s() const { return Get_s(); }

virtual map<string, double> GetPerformance() const;

We will see the theoretical background of performance indices and how we
collect them using DEVS++ in Chapter 4.

2.2.3 Coupled DEVS: Coupled

The coupled DEVS is implemented as the class Coupled derived from the class
Devs. Coupled class is concrete and it has a constructor. It also has a destructor
in which all sub-components are deleted.

class DEVSpp_EXP Coupled: public Devs {

public:

Coupled(const string& name=""): Devs(name) {}

virtual ~Coupled();

Sub-components Related

There are three main functions associated with modeling of sub-components as
follows.

void AddModel(Devs* md);

Devs* GetModel(const string& name) const;

void RemoveModel(Devs* md);
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Couplings Related

Related to couplings, there are three constructing functions, one each for the
external input couplings (EICs), the internal couplings (ITCs), and the external
output couplings (EOCs).

void AddCP(InputPort* spt, InputPort* dpt); // EIC

void AddCP(OutputPort* spt, InputPort* dpt); // ITC

void AddCP(OutputPort* spt, OutputPort* dpt);// EOC

In addition, we can print out the coupling information by calling PrintEICs(),
PrintITCs(), PrintEOCs(), and PrintCouplings() for printing EICs, ITCs,
and EOCs, and all of them, respectively.

void PrintEICs() const;

void PrintITCs() const;

void PrintEOCs() const;

void PrintCouplings() const;

The corresponding removing functions are as follows.

void RemoveCP(InputPort* spt, InputPort* dpt); // EIC

void RemoveCP(OutputPort* spt, InputPort* dpt); // ITC

void RemoveCP(OutputPort* spt, OutputPort* dpt);// EOC

2.3 Scalable Real-Time Engine: SRTEngine

DEVS++ provides a simulation engine class, called SRTEngine which is a con-
crete class. When we make an instance of SRTEngine, its constructor creates
an independent simulation thread from the main thread.

2.3.1 Constructor

SRTEngine(Devs& modl, Time ending_t = DBL_MAX, CallBack cbf=NULL);

The constructor needs three arguments: the first argument is the Devs model
to be simulated, the second is the simulation terminating time, the last is a
callback function that is used to inject a user-input into the simulation model.

Callback function’s type is defined as

PortValue (*CallBack)(Devs& md).

It returns a PortValue which can be a pair of an input port and a value. The
associated input port should belong to Devs md. The following example shows
that InjectMsg returns a PortValue whose port is vm’s ip input port.
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PortValue InjectMsg(Devs& md) {

VM& vm = (VM&) md;

return PortValue(vm.ip);

}

We can pass the function pointer of a callback function to an instance of
SRTEngine as follows.

SRTEngine simEngine(vm, 10000, InjectMsg);

2.3.2 Console Menu

If we call the RunConsoleMenu() function of SRTEngine, it provides a console
menu as follows.

scale, step, run, mrun, [p]ause, pause_at, [c]ontinue, reset,

rerun, [i]nject, dtmode, animode, print, cls, log, [e]xit

>

Let’s take a look at each menu item.

scale f

scale controls the speed of time flow by the scale factor f

• 0.1 for 10 times slower than real time

• 1 as fast as real time;

• 10 for 10 times faster than real time;

• 0 or greater than 1000,000 for as fast as possible;

step

step executes a simulation run until one internal transition is fired. After that
it pauses the run automatically unless the user inputs commands such as step,
continue, run, mrun. This command can be useful when we try a step-by-step
run to see the model behavior.

run

run executes a simulation run which continues until it reaches the simulation
ending time, which is set by the second argument of the SRTEngine constructor
or by the command pause_at et.
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mrun n

mrun executes n simulation runs. Each simulation run stops when it reaches the
simulation ending time. When trying mrun n, where 2≤ n ≤ 20, SRTEingine
calculates the 95% confidence interval of the average values of each statistical
items.

[p]ause

pause or p pauses a simulation run immediately.

pause at et

pause_at sets the simulation ending time as et.

[c]ontinue

continue or c resumes a simulation run which has been paused. It continues
the previous simulation mode that had been determined by step, run, or mrun.

reset

reset initializes the associated simulation model.

rerun

rerun combines reset and run.

[i]nject

inject or i injects an user-input event into the simulation model. This com-
mand invokes the callback function whose type is PortValue callback(Devs& md).
This is the third argument of the SRTEngine constructor.

dtmode

dtmode sets the print mode of discrete transition, both for in the console and in
the log file (whose file name is devspp_log.txt). The choice can be one of the
following options:

• none displays no discrete state transition.

• rel displays relative mode in which lifespan and elapsed time are dis-
played.

• abs displays absolute mode in which last event time and n ext event time
are displayed.
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• nc no change.

animode

animode sets the animation interval. The choice can be either one of the fol-
lowing options.

• none displays no animation state transition.

• ani is the number of animation interval > 1.0E-2.

• nc no change.

print

print displays information according to the following option.

• q prints the total state of the model.

• cpl prints the couplings information if the model is a coupled DEVS.

• s prints all settings. The following screen shot is made by print s.

scale factor: 1

run-through mode

current time: 0

simulation ending time: 1.79769e+308

current dt_mode: absolute

current animation mode: on and interval= 0.25

current log setting: on, p00

• p prints the performance indices at the current time.

cls

cls clears the screen.

log

log sets the logging option which generates the log file devspp_log.txt. After
the log command, DEVS++ shows the current log settings and waits for the
user input as follows.

current log setting: on, p00

options: {on,off}, {+,-}{pqt} nc >

The user options are on or off or {+,-}{pqt} or nc. Their meanings are:



24 Structure of DEVS++

• {on, off} is the main log options. Use on for turning log on or off for
turning log off. If the mode is on, three independent options are selectable.

– p is for logging performance indices at the end of a simulation run.

– q is for logging the total state of the model at the end of a simulation
run.

– t is for logging every single discrete event transition.

If all of three are on, it is shown as pqt. If p is on, q and t are off, the
display is shown as p00, etc.

• {+,-}{pqt} can be interpreted that + stands for setting the following
options on, while - stands for turning the following options off. For
example +qt means to set q and t on, while -p means to set p off.

• nc no change.

[e]xit

exit or e exits the console menu.
Table 2.1 summarizes API functions of SRTEngine related to menu items

that we have introduced so far.

2.4 Random Variable

DEVS++ modified the random number generator that was provided with the
ADEVS engine [Nut00] in 2004. rv class defined in RNG.h is a random vari-
able whose default constructor rv() sets its seed number as the current time.
There are four probability density functions that can be used to select a random
number: uniform, triangular, exponential, normal.

1. uniform(a,b) returns a random number having a uniform PDF over the
closed interval [a,b].

2. triangular(a,b,c) returns a random number having a triangular PDF
over the closed interval [a,b] with mode c, where c in [a,b].

3. exp(m) returns a random number having an exponential PDF with mean
m.

4. normal(m,s) returns a random number having a normal PDF with mean
m and standard deviation s.
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Table 2.1: APIs related to Menu Items

Menu Item SRTEngine’s APIs

scale double GetTimeScale() const;

void SetTimeScale(double ts);

step void Step();

run void MultiRun(1);

mrun n void MultiRun(unsigned n);

pause void Pause();

pause_at Time GetEndingTime() const;

void SetEndingTime(Time et);

continue void Continue();

reset void Reset();

rerun void Rerun();

inject void Inject(PortValue x);

dtmode void Set_dtmode(PrintStateMode flag);

void Get_dtmode(PrintStateMode& flag) const;

where
enum PrintStateMode {P_NONE, P_relative, P_absolute};

animode void SetAnimationFlag(bool flag);

bool GetAnimationFlag() const;

void SetAnimationInterval(TimeSpan ai);

TimeSpan GetAnimationInterval() const;

print void PrintTotalState() const;

void PrintCouplings() const;

void PrintSettings() const;

void PrintPerformanceOfaRun() const;

log static void SetLogOn(bool flag=true);

static void SetLogPerformance(bool flag=true);

static void SetLogTotalState(bool flag=true);

static void SetLogTransition(bool flag=true);

static bool GetLogOn();

static bool GetLogPerformance();

static bool GetLogTotalState();

static bool GetLogTransition();
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2.5 Miscellaneous

2.5.1 Time Span and Time

Sometimes, we are confused with two concepts: time span and time. A time
span means the time duration between a starting time and an ending time
in which the starting time and the ending time are specific values within the
time horizon. In general, the time horizon consists of all the non-negative real
numbers. But a time value is for a specific value within the time horizon.

In DEVS++, both TimeSpan and Time are defined as double in Devs.h.

typedef double TimeSpan ;

typedef double Time;

When we want to check if a pair a and b are the same in terms of a tolerance
tol, we can use the following function defined in Devs.h.

bool DEVSpp::IsEqual(double a, double b, double tol=1E-3);

Since both types of a and b are double, we can be for checking for Time and
TimeSpan, respectively.

We can also check if a given real number is equal to infinity by the following
function

bool DEVSpp::IsInfinity(double a, double tol);

in which it calls IsEqual(a, DBL_MAX, tol).

2.5.2 String Handling

String handling functions inside of the DEVSpp name space are available in
StrUtil.h and StrUtil.cpp.

string STR(int v);// return int v as a string

string STR(conststring& s,int v);//s+::STR(v);

string STR(unsigned v); // return int v as a string

string STR(const string& s, unsigned v);//s+::STR(v);

string STR(double v);// return int v as a string

string STR(const string& s, double v);//s+::STR(v);

//-- split string s using delimiter c by n times if possible

vector<string> Split(const string& s, char c);

//-- return the merged string with s from f to t with delimiter c

string Merge(const vector<string>& s, unsigned f, char c);
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//-- return string(pt->Parent->Name+"."+pt->Name);

string NameWithParent(DEVSpp::Port* pt);

//-- hierarchical name of child from the view of under.

//-- if under=NULL, the hierarchical name starts from the root model

string HierName(const Devs* child, const Coupled* under=NULL);





Chapter 3

Simple Examples

In this chapter, we will see DEVS++ examples of atomic DEVS as well as
coupled DEVS.

3.1 Atomic DEVS Examples

3.1.1 Timer

An example, Ex_Timer, shows how to define a concrete atomic and deterministic
DEVS from Atomic. In this example, we define a class SimplestTimer which
generates an output, op, every 3.3 seconds as illustrated in Figure 3.1.

SimplestTimer has one output port, op. In the constructor, op is assigned
by calling AddOP. The function init() does nothing because the class has no
internal variable. The function tau() returns 3.3 all the time.

class SimplestTimer: public Atomic {

public:

OutputPort* op;

SimplestTimer(const string& name=""): Atomic(name), n(0)

{ op = AddOP("op"); }

/*virtual*/ void init(){}

/*virtual*/ Time tau() const {

return 3.3;

}

Since there is no input transition defined, delta_x has the null body. However,
delta_y returns the output op.
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Figure 3.1: SimplestTimer (a) State Transition Diagram (b) Event Segment (c)
te Trajectory

/*virtual*/ bool delta_x(const PortValue& x) {return false;}

/*virtual*/ void delta_y(PortValue& y)

{

y.Set(op);

}

The display function Get_s() returns the current status, which is constantly
Working.

/*virtual*/ string Get_s() const {

return string("Working");

}

};

If you try step, you can see the animation is increasing the elapsed time.
The following display shows the state at time 2.188 where the schedule time
t_s=3.3 and the elapsed time t_e=2.188.

(STimer:Working, t_s=3.300, t_e=2.188) at 2.188

The simulation run will stop at 3.3 because its run mode is step-by-step when
using step. At that time, it will display the discrete state transition as follows.

(STimer:Working, t_s=3.300, t_e=3.300)

--({!STimer.op},t_c=3.3)-->

(STimer:Working, t_s=3.300, t_e=0.000)

The first state is the source of state transition. An arc shows a triggering event
which is the output op of STimer at the current time=3.3. The second state is
the destination of the state transition in which the lifespan is also 3.3 but the
elapsed time has been reset to zero.
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Figure 3.2: State Transition Diagram of Vending Machine

Exercise 3.1 Consider the example Ex_Timer.

a. Let’s change the display mode from rel to abs by applying the command
dtmode. Then preset the simulation ending time to “5” by pause_at 5.
Now run until the simulation stops. When it stops at t_c=5, print the
total state using pinrt with option q. What are the values of t_s and
t_e, respectively? Guess the remaining time that t_e becomes t_s (or
t_c becomes t_n) at this moment.

b. Add one more state variable int n in SimplestTimer class. n should be
set = zero in init(), and it should increase by one in delta_y(). Get_s()
shows n in the C print format of "Working, n=%d".

3.1.2 Vending Machine

Consider a simple vending machine (VM) from which we can get Pepsi and Coke.
Figure 3.2 illustrates the state transition diagram of VM we are considering.

There are three input events such as ?dollar for “input a dollar”, ?pepsi_btn
for “push the Pepsi button”, ?coke_btn for “push the Coke button”. Similarly,
we can model three output events such as !dollar for “a dollar out (because
of timeout of menu selection)”, !pepsi for “Pepsi out” and !coke for “Coke
out’. 1 The state of VM can be either Idle for “Idle”, Wait for “Wait”(that is
waiting for selection of Pesi or Coke), O_Pepsi for “output Pepsi” and O_Coke

for “output Coke”. And their life times are: 15 time units for Wait, 2 time
unites for both O_Pepsi and O_Coke, ∞ for Idle which is denoted by inf in
Figure 3.2. 2

1We use symbol ? and ! for indicating an input event and an output event, respectively.
2we call a state s passive if τ(s) = ∞ or active otherwise (0 ≤ τ(s) < ∞). In Figure 3.2,

the state Idle is passive, the rest states are active.
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At the beginning (t=0), VM is at Idle. If we put ?dollar in, it changes the
state into Wait simultaneously updating ts = 15 and te = 0 for the state. While
in the state, if VM receives ?pepsi_btn (resp. ?coke_btn), it enters into the
state O_Pepsi (resp. O_Coke) and simultaneously updates ts = 2 and te = 0.
While in the state O_Pepsi or O_Coke, VM ignores any input and preserves the
state. Similarly, while in the state Wait, VM ignores ?dollar input.

After staying at Wait for 15 time unites, VM returns to Idle state and outputs
the dollar if we don’t select Pepi or Coke within the 15 time units. However, if
we had selected one of them, VM changes its state into O_Pepsi (resp. O_Coke).
Then after 2 time unites, VM outputs !pepsi (resp. !coke) and returns to Idle.

The example of Ex_VendingMachine shows an atomic DEVS model of VM.
First of all, there are some constant strings we use for describing states as
follows.

const string IDLE="Idle";

const string WAIT="Wait";

const string O_PEPSI="O_Pepsi";

const string O_COKE="O_Coke";

The class VM has three input port pointers idollar, pepsi_btn and coke_btn;
three output port pointers odollar, pepsi, coke, all assigned by returning val-
ues of the AddIP and AddOP functions in the constructor.

class VM: public Atomic {

public:

InputPort * idollar, *pepsi_btn, *coke_btn;

OutputPort * odollar, *pepsi, *coke;

VM(const string& name=""): Atomic(name)

{

idollar = AddIP("dollar");

pepsi_btn = AddIP("pepsi_btn");

coke_btn = AddIP("coke_btn");

odollar = AddOP("dollar");

pepsi = AddOP("pepsi");

coke = AddOP("coke");

init();

}

VM’s initial state is set to IDLE in init(). The lifespan of each state is
defined in tau() as 15, 2, 2, and infinity for WAIT, O_PEPSI, O_COKE, and IDLE,
respectively.
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/*virtual*/ void init()

{

m_phase = IDLE;

}

/*virtual*/ Time tau() const

{

if(m_phase == WAIT)

return 15;

else if(m_phase == O_PEPSI)

return 2;

else if(m_phase == O_COKE)

return 2;

else

return DBL_MAX;

}

The input transition function delta_x defines every arc triggered by an
input event in Figure 3.2 and returns true for each such arc. If the input event
idollar arrives while VM is not in state Idle, or if the input events pepsi_btn
or coke_btn arrive while VM is not in state Wait, delta_x returns false, and
the input is ignored.

/*virtual*/ bool delta_x(const PortValue& x)

{

if(m_phase == IDLE && x.port == idollar){

m_phase = WAIT;

return true;

} else if(m_phase == WAIT && x.port == pepsi_btn) {

m_phase = O_PEPSI;

return true;

} else if(m_phase == WAIT && x.port == coke_btn) {

m_phase = O_COKE;

return true;

}else

return false;

}

The output transition function delta_y defines every arc generating an output
event in Figure 3.2.

/*virtual*/ void delta_y(PortValue& y)

{

if(m_phase == WAIT)
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y.Set(odollar);

else if(m_phase == O_PEPSI)

y.Set(pepsi));

else if(m_phase == O_COKE)

y.Set(coke);

m_phase = IDLE;

}

The virtual function Get_s() is also overridden and returns an m_phase variable
that is a string.

/*virtual*/ string Get_s() const

{

return m_phase;

}

protected:

string m_phase;

};

The following example demonstrates the use of a callback function to inject
a user-input into an instance of VM.

PortValue InjectMsg(Devs& md)

{

VM& vm = (VM&)md;

string input;

cout << "[d]ollar [p]epsi_botton [c]oca_botton > " ;

cin >> input;

if(input == "d")

return PortValue(vm.idollar);

else if(input == "p")

return PortValue(vm.pepsi_btn);

else if(input == "c")

return PortValue(vm.coke_btn);

else {

cout <<"Invalid input! Try again! \n";

return PortValue();

}

}

The callback function InjectMsg casts the type of Devs& md to VM&vm. And
the user-input of either d, p, or c is mapped to PortValue(vm.idollar),
PortValue(vm.pepsi_btn), or PortValue(vm.coke_btn), respectively.
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The last part the the code in Ex_VendingMachine runs the simulation engine.
First we make vm as an instance of VM, and plug vm into an instance of SRTEngine
with the simulation ending time=10000 using the above callback function.

void main( void ) {

VM* vm = new VM("VM") ; //-- simulation model

SRTEngine simEngine(*vm, 10000, InjectMsg); // see above function

simEngine.RunConsoleMenu();

delete vm;

}

Let’s try the first step. Observe that since tau(IDLE)=∞ and the initial
t_s=∞ also, the elapsed time t_e cannot ever reach t_s. Thus this command
step doesn’t stop until the te becomes 1000 which is the simulation ending time
(unless the user interrupts the simulation).

In this case, we can stop the simulation run using pause or p, followed by
Enter key. The following screen shows the situation if we make it pause at
8.859.

(VM:Idle, t_s=inf, t_e=8.859) at 8.859

Let’s try inject or i. Then we can see the console output which is produced
by the above InjectMsg(Devs& md) as follows.

[d]ollar [p]epsi_botton [c]oca_botton >

If we input d, we can see the input causes the state to transition from Idle to
Wait as follows.

(VM:Idle, t_s=inf, t_e=8.859)

--({?dollar,?VM.dollar}, t_c=8.859)-->

(VM:Wait, t_s=15.000, t_e=0.000)

Now, we use continue or c to resume stepping again. If we want to pause
again and inject a menu selection such as pepsi_btn or coke_btn, we can do
that just like before.

Exercise 3.2 Consider modifying the VM model in EX_VendingMachine in order
to add the behavior of rejecting a second dollar input when VM is the state Wait.
To model this, let’s add a state Reject whose lifespan is 0. We define the output
transition δy at Reject as delta_y(Reject) = (!dollar, Wait). However
there are two ways of rescheduling of t_s and t_e of the the state Wait when
VM comes back to the state. Let’s try each of the following two ways.

1. Reset t_s=15 and t_e=0.

2. Make t_s and t_e back to the values they had right before the input of
the additional dollar.
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Figure 3.3: Monorail System

3.2 Coupled DEVS Examples

3.2.1 Monorail System

Figure 3.3 illustrates the configuration of a monorail system which consists of
four stations whose names are ST0, ST1, ST2 and ST3, respectively.

Each station, ST0, ST1, ST2 and ST3, is an instance of Station class derived
from Atomic such that it has an input event set X= {?vehicle, ?pull} and
an output event set Y ={!vehicle, !pull} and two state variables: phase ∈
{Empty (E), Loading (L), Sending (S), Waiting (W), Collided (C)}, and nso ∈
{false(f), true(t)} indicating “next station is NOT occupied” for nso=f or “next
station is occupied” for nso=t.

To avoid collisions that can occur when more than one vehicle attempts to
occupy a station (let’s call it A) at the same time, the station prior to A (let’s
call it B) should dispatch the vehicle ONLY when B’s nso = f. The phase
transition diagram of a single station is shown in Figure 3.4 where an arc is
augmented by (pre-condition),(post-condition). For example, when a station
receives ?p at phase=E, it makes nso=f; if phase=L and nso=f, then when it
receives ?p, it changes into phase=S internally without any output indicated by
!ε. The symbols ?v, ?p, and !v in Figure 3.2 stand for ?vehicle, ?pull, and
!vehicle, respectively.

The loading time lt is assigned as lt = 10 for ST0, ST2, ST3; lt = 30 for ST1
(because ST1 is bigger than the rest other three stations). The initial state for
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Figure 3.4: Phase Transition Diagram of Station
(A dashed line indicates δx(s, ts, te, x) = (s′, 0).)

each station is s0 = (E, t) for ST0 and ST2, s0 = (L, f) for ST1 and ST3.
To model and simulate this monorail system, we build Station as follows.

Station

First of all, we define several constant strings for indicating the phase of Station.
And a macro REMEMBERING is defined for testing the effect of monitoring the next
station’s status using nso.

const string EMPTY="E";

const string LOADING="L";

const string SENDING="S";

const string WAITING="W";

const string COLLIDED="C";

#define REMEMBERING // for testing the effect of using nso

The class Station has several state variables: a string m_phase; bool init_occupied

indicating the initial occupation state of the station, bool nso which indicates
if the next station is occupied or not; and the constant variable TimeSpan

loading_t indicating the lifespan of a state when its phase is LOADING.
Station has two input port pointers ipull and ivehicle, one output port

pointer ovehicle. These variables, including ports, are assigned in the con-
structor as follows.

class Station: public Atomic {
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public:

string m_phase;

bool init_occupied;

bool nso;//next_state_occpied

const TimeSpan loading_t;

InputPort* ipull, *ivehicle;

OutputPort* ovehicle;

Station(const string& name, bool occupied, TimeSpan lt):

Atomic(name), init_occupied(occupied), loading_t(lt), nso(true)

{

ipull = AddIP("pull"); ivehicle = AddIP("vehicle");

ovehicle = AddOP("vehicle");

init();

}

Station::init() initializes m_phase depending on init_occupied such
that m_phase = SENDING if init_occupied is true, otherwise, m_phase =
EMPTY.

/*virtual*/ void init()

{

if(init_occupied == true)

m_phase = SENDING;

else

m_phase = EMPTY;

//cout << Name << ":" << Get_s()<<endl;

}

Station::::tau() returns the lifespan of each state; 10 for SENDING; loading_t
for LOADING; ∞ otherwise.

/*virtual*/ TimeSpan tau() const

{

if (m_phase == SENDING)

return 10;

else if (m_phase == LOADING)

return loading_t;

else

return DBL_MAX;

}

Station::delta_x defines the input transition such that if it receives an input
through ipull, it sets nso = false. At that time, if the station’s phase is



3.2 Coupled DEVS Examples 39

WAITING, then nso had previously been set by true for remembering that the
next station had been occupied, delta_x then changes the phase to SENDING

and returns true.
When a station receives a vehicle through ivehicle port, if phase is EMPTY,

its phase changes into LOADING; otherwise the phase changes into COLLIDED.

/*virtual*/ bool delta_x(const PortValue& x)

{

if( x.port == ipull) {

nso = false;

if( m_phase == WAITING){

#ifdef REMEMBERING

nso = true;

#endif

m_phase = SENDING;

return true;

}

}

else if(x.port == ivehicle) {

if(m_phase == EMPTY)

m_phase = LOADING;

else // rest cases lead to Colided!

m_phase = COLLIDED;

return true;

}

return false;

}

Station::delta_y defines the output transition behavior such that, at the end
of LOADING phase, if nso=true, then delta_y changes the stations’ phase into
WAITING. But if nso=false, delta_y marks nso=true for remembering the next
station’s occupation and changes the station’s phase to SENDING. At the end of
SENDING phase, it sends out the vehicle through ovehicle port and changes the
station’s phase to IDLE.

/*virtual*/ void delta_y(PortValue& y) {

if(m_phase == LOADING){

if(nso == true)

m_phase = WAITING;

else {

#ifdef REMEMBERING

nso = true;

#endif
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m_phase = SENDING;

}

} else if(m_phase == SENDING) {

y.Set(ovehicle);

m_phase = EMPTY;

}

}

The displaying function Get_s() is overridden to return a string containing
information about m_phase and nso as follows.

/*virtual*/ string Get_s() const

{

string str = "phase="+m_phase +",nso=";

if(nso) str +="true";

else str +="false";

return str;

}

Monorail System

To construct the monorail system, we will make four instances from Station.
Stations ST1 and ST3 each have one vehicle initially, the other two have none,
while the loading time of ST1 is 30 time-units, the other three each have a
loading time of 10.

Each station will collect its own performance data. All couplings are con-
nected as shown in Figure 3.3.

Coupled* MakeMonorail(const char* name) {

Coupled* monorail = new Coupled(name);

//-- Add Station 0 to 3 ----

Station* ST0 = new Station("ST0", false, 10);

ST0->CollectStatistics();

Station* ST1 = new Station("ST1", true, 30);

ST1->CollectStatistics();

Station* ST2 = new Station("ST2", false, 10);

ST2->CollectStatistics();

Station* ST3 = new Station("ST3", true, 10);

ST3->CollectStatistics();
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monorail->AddModel(ST0);

monorail->AddModel(ST1);

monorail->AddModel(ST2);

monorail->AddModel(ST3);

//---------------------------------------------

//-------- Add internal couplings ------------

monorail->AddCP(ST0->ovehicle, ST1->ivehicle);

monorail->AddCP(ST1->ovehicle, ST0->ipull);

monorail->AddCP(ST1->ovehicle, ST2->ivehicle);

monorail->AddCP(ST2->ovehicle, ST1->ipull);

monorail->AddCP(ST2->ovehicle, ST3->ivehicle);

monorail->AddCP(ST3->ovehicle, ST2->ipull);

monorail->AddCP(ST3->ovehicle, ST0->ivehicle);

monorail->AddCP(ST0->ovehicle, ST3->ipull);

//---------------------------------------------

return monorail;

}

If you try the command run, DEVS++ will simulate system performance until
it reaches the simulation ending time of 1000 time units. The default simula-
tion speed of DEVS++ is the real time so it will take 1000 seconds in reality.
However, the user don’t have to wait until the simulation ending time. Don’t
forget to use the command pause to stop a simulation run any time you want.

We can change the simulation speed as maximum by scale 0 . If you don’t
care of animation output, you can set animode none. In addition, if you don’t
want to see the status of discrete state transitions, you can set dtmode none

too.
The following screen is the results of the command print p.

CPU Run Time: 12.375000 sec.

mr.ST0

phase=E,nso=false: 0

phase=E,nso=true: 0.59

phase=L,nso=false: 0.01

phase=L,nso=true: 0.19

phase=S,nso=true: 0.2

phase=W,nso=true: 0.01

mr.ST1

phase=E,nso=true: 0.21



42 Simple Examples

phase=L,nso=false: 0.4

phase=L,nso=true: 0.19

phase=S,nso=true: 0.2

mr.ST2

phase=E,nso=false: 0.2

phase=E,nso=true: 0.4

phase=L,nso=false: 0.2

phase=L,nso=true: 0

phase=S,nso=true: 0.2

mr.ST3

phase=E,nso=false: 0.19

phase=E,nso=true: 0.41

phase=L,nso=false: 0.2

phase=S,nso=true: 0.2

The performance index for each station is the ratio of the total time the station
stays in each state divided by the simulation run time of 1000. In the example
above, for mr.ST3, phase=L,nso=false: 0.2 indicates that the total time ST3
spent in the LOADING state was about 20% of the length of simulation run time of
1000. That means that station 3 spent about 200 time-units in the LOADING
phase.

It is not hard to find that since ST1::loading_t=30 is three times longer
than other stations’ loading_t, ST1 stays at LOADING about 59% of the simu-
lation time. This causes ST0 to transition into WAIT because ST1 stays so long
at LOADING.

Exercise 3.3 Let’s comment out the line of “#define REMEMBERING” in Station.h

of Ex_Monorial example. Build it again and try run. When the run stops, try
print q and print p. Is there a station which gets into COLLIDED?
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Performance Evaluation

This section introduces several performance indices in Section 4.1 and shows
how to calculate them in Section 4.2.

4.1 Performance Measures

This section introduces four performance indices: Throughput, Cycle Time,
Utilization, and Average Queue Length.

4.1.1 Throughput

It is not hard to imagine that a system produces products. In this context,
we can think of a performance index for the system that answers the question
“how may products does this system produce?” This performance index can
be measured by counting the number of products produced by the system over
particular time period.

If we have x ∈ N jobs produced by the system over an observational time
span to, then the system throughput thrp is

thrp =
x

to
(4.1)

and its unit of measurement is jobs/time-unit.

Example 4.1 (Throughput) If the number of products produced by a system is
2500 during 100 minutes, then its throughput is thrp = 2500/100 = 25 jobs/min.
¤
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Figure 4.1: A System having a Buffer and a Processor

4.1.2 Cycle Time

A system performs a set of activity cycles so its performance can be measured
by how long it has taken to perform an activity cycle. The unit of this measure
is time-unit/activity.

Given a event set Z, let a timed event be a pair of an event z ∈ Z and its
occurrence time t ∈ T. Then an activity consists of a pair of ((zl, tl), (zu, tu))
such that tl ≤ tu. Given an activity a = ((zl, tl), (zu, tu)), its duration or cycle
time, denoted d(a) is defined

c(a) = tu − tl. (4.2)

Given an activity set A, the (average) cycle time of A is

tcyc(A) =

∑
a∈A

c(a)

|A| . (4.3)

Since cycle time is defined over a given activity set, it can be interpreted
differently depending on contexts of activity sets. For example, in the system
which consists of a buffer and a processor as shown in Figure 4.1, the system time
can be measured over the entire processing activity from arrival to departure of
the BufferProcessor system. Also waiting time can be considered as the time
duration for the waiting activity in Buffer, while processing time can be the
time duration between arrival to and departure from Processor.

Without loss of generality, we normally consider an activity set A that
has a homogenous events pair, i.e. for a1 = ((zl1, tl1), (zu1, tu1)) and a2 =
((zl2, tl2), (zu2, tu2)) ∈ A, then zl1 = zl2 and zu1 = zu2. In this kind of activity
set A, events themselves are not critical to compute the cycle time (even though
it makes much clear our understanding when events are available.). Thus, we
can see the average cycle time of an activity set A as the average of length of
two times tl and tu
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Figure 4.2: State Trajectory of a Processor

tcyc(t(A)) =

∑
(tl,tu)∈t(A)

tu − tl

|t(A)| (4.4)

where t(A) = {(tl, tu) : ((zl, tl), (zu, tu)) ∈ A}.

Example 4.2 (Cycle Time as System Time) Assume we have the set of time
pairs A = {((a, 5), (d, 17)), ((a, 7), (d, 29)), ((a, 15), (d, 41)), ((a, 50), (d, 62))} where
a is for “arrival” event, and d for “departure” BufferProcessor system in
Figure 4.1. Since t(A) = {(5, 17), (7, 29), (15, 41), (50, 62)}, the system time is
tcyc(A) = tcyc(t(A)) = (12 + 21 + 26 + 12)/4 = 17.75. ¤

4.1.3 Utilization

Conventionally the definition of utilization is the percentage of the working time
of a machine compared to its total running time. Let’s consider a processor P as
shown in Figure 4.2(a) which has two states: Busy, which is defined as working
time, and Idle, which is defined as “running, but not working” time. Once
it receives an input ?x, it processes the input and then generates output !y

after 10 time units. Figure 4.2(b) illustrates a state trajectory of the processor
terminating at to = 30. In this trajectory, the total time span of Busy is
(15-5)+(30-23)=17, so utilization of the processor is 56.7%=(17/30)*100, while
idle’s percentage is 100-56.7=43.3%.

We can generalize this concept to more than two states. Let’s consider the
vending machine introduced in Section 3.1.2. Suppose that we have a state
trajectory of the vending machine as shown in Figure 4.3. This state trajectory
can be seen as a sequences of piece-wise constant segments. The time it takes
to transition between states is assumed to be zero.

The time duration at a piece-wise constant segment is defined by

td : S × N→ T (4.5)
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Figure 4.3: A State Trajectory of Vending Machine

where N is a set of natural numbers. The natural number i ∈ N of this func-
tion td(s, i) indicates the order i of the segment whose state is s. For example,
in the state trajectory of Figure 4.3, td(Idle, 1) = 5 − 0 = 5, td(Idle, 2) =
23− 20 = 3, td(Idle, 3) = 40− 30 = 10 and td(Idle, n) = 0 for n = 4, 5, . . ..

Let C be the current state. Then the probability that the current state is
s ∈ S over time from 0 to to, denoted by P (C = s), is

P (C = s) =

∑
i∈N

td(s, i)

to
. (4.6)

It is true that ∑

s∈S

∑

i∈N

td(s, i) = to. (4.7)

So it is also true that

∑

s∈S

P (C = s) =
∑

s∈S




∑
i∈N

td(s, i)

to


 =

to
to

= 1. (4.8)

Example 4.3 Consider the state trajectory of Figure 4.3. Then P (C =Idle)
= (5+3+10)/40 = 0.45, P (C=Wait) = (15+5)/40 =0.5, P (C=O_pepsi)=2/40
=0.05, P (C=O_coke)=0. ¤

Exercise 4.1 Assume that we have a processor as shown in Figure 4.2(a). From
the processor, we have an event segment ω[0,50] = (?x, 10)(!y, 20)(?x, 35)(!y, 45)
where (z, t) means an event z occurs at t ∈ T and the observation was performed
from 0 to 50. Calculate P (C=Idle) and P (C=Busy) over time [0,50]. ¤

To calculate P (C = s), we need to keep track of
∑
i

td(s, i) by accumulating all

time durations of piece-wise constant time segments when the system is in state
s. We will see how to implement this in Section 4.2.2.



4.1 Performance Measures 47

Figure 4.4: Trajectory of Queue

4.1.4 Average Queue Length

Once again, let’s consider a system with a buffer and a processor that are
serially connected as shown in Figure 4.1. To avoid collisions of multiple inputs
at the processor, the buffer stores inputs while the processor is busy working on
previous inputs.

Depending on inter-arrival times of between inputs and Processor’s pro-
cessing time, the length of time an input waits in Buffer can vary widely. Thus
the number of waiting inputs (queue size) can be a random number.

Recall how we developed the probability that the current state C is equal
to a state s in Section 4.1.3. Let the current state C of Buffer be defined as
the number of inputs currently waiting in buffer. Then the probability that the
number of waiting parts C is equal to x ∈ N, where N is a suitably defined
subset of the natural numbers, over an observation time from 0 to to is

P (C = x) =

∑
i∈N

td(x, i)

to
(4.9)

The mean or expected value of C is defined by

E(C) =
∑

x∈N
xP (C = x) (4.10)

The Average Queue Length is defined as Equation (4.10).

Example 4.4 Suppose that we have a state trajectory of a queue as shown in
Figure 4.4. By Equation (4.9), we can get P (C=0)=(4+7)/60=0.183, P (C=1)=
(3+3+3+5+7)/60=0.35, P (C=2)=(4+5+7+3)/60=0.317, P (C=3)=9/60=0.15.
By Equation (4.10), the Average Queue Length is E(C = x)=0*0.183+1*0.35+
2*0.317+3*0.15=1.434. ¤
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Figure 4.5: IID random variants X1 . . . Xn from n simulation runs

Since the natural number x ∈ N is the special case of a general state s ∈ S,
if we can calculate P (C = s) then we can also calculate P (C = x) as well as
E(C). We will see how we implement this process in Section 4.2.3.

4.1.5 Sample Mean, Sample Variance, and Confidence In-

terval

If the internal components of a system behave stochastically or if its input events
can occur at arbitrary times, the performance have randomness.

If we reset the model under study prior to each simulation run, the perfor-
mance indices from each run are independent from those of all the other runs.
Random variables are said to be identically distributed if the associated vari-
ables have identical measurement. For examples, the Utilization of Processor in
BufferProcessor of Figure 4.1 from multiple simulation runs are independent
and identically distributed (IID) random variable.

Suppose that we try to estimate the real mean µ of a random variable from
a sample whose values are X1, X2, . . . Xn from n simulation runs as illustrated
in Figure 4.5. Then the sample mean

µ̂ =

n∑

i=1

Xi

n
(4.11)

is an unbiased (point) estimator of the real mean µ. Similarly, the sample
variance

σ̂2(n) =

n∑

i=1

[Xi − µ̂]2

n− 1
(4.12)

is an unbiased estimator of the real variance σ2. For n ≥ 2, a 100(1−α) percent
confidence interval for µ is given by

µ̂± tn−1,1−α/2

√
σ̂2(n)

n
(4.13)
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where tn−1,1−α/2 is the upper 1− α/2 critical point for the t distribution with
n− 1 degree of freedom. It can be written

P

[
µ̂− tn−1,1−α/2

√
σ̂2(n)

n
≤ µ ≤ µ̂ + tn−1,1−α/2

√
σ̂2(n)

n

]
= 1− α (4.14)

and we say that we are 100(1-a) percent confident that the real µ lies in the
interval given by Equation (4.13).

Example 4.5 Suppose that 10 simulation runs produce system throughput
data of 12.0, 15.0, 16.8, 18.9, 9.5, 14.9, 15.8, 15.5, 5.0, and 10.9. Our ob-
jective is to build the 90 % confidence interval for µ. We have t-distribution
values of t10,0.9=1.372, t10,0.95=1.812, t9,0.9=1.383, t9,0.95=1.833.

Then µ̂=13.4 and σ̂2=16.75 and the 90% confidence interval for µ is µ̂ ±
t9,0.95

√
σ̂2(n)

n = 13.4± 1.83
√

16.75
10 = [11.03, 15.77] ¤

The values of tn−1,1−α/2 of t pdf are available in many statistics books and
simulation books [Zei76, LK91]. DEVS++ calculates the 100(1-α) confidence
interval for µ when using mrun n for 2 ≤n≤ 20 in verion 1.4.2. We will see it in
detail in Section 4.3.

4.2 Practice in DEVS++

This section addresses how we can calculate the performance indices using
DEVS++. All classes used in this section are available in DEVSpp/Examples/

Ex_ClientServer folder.

4.2.1 Throughput and System Time in DEVS++

Throughput can be collected by counting flow entities coming out of the system
under study, while System Time can be collected by tracing the arrival time
and the departure time of each flow entity. 1 To do this, we will use two atomic
models: Generator and Transducer, which are key models in the experimental
frame.

Counting flow entities coming from the system can be done by Transducer.
For collecting system time, we will need the cooperation of both Generator and
Transducer.

1Flow entities can be clients of a bank, products of a manufacturing system, airplanes of

an airport, and messages of a communicating network.
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Figure 4.6: Generator and Transducer in Ex ClientServer

Generator

The state transition diagram of Generator is shown in Figure 4.6(a). This
model has an output port out and tmValue-type client which will be used for
cloning the client every generating time.

class Generator: public Atomic {

public:

OutputPort* out;

tmValue client;

public:

Generator(const string& name=""): Atomic(name),

client() { out = AddOP("out"); }

Generator::tau() returns a random value from an exponential pdf with
mean 5.

/*virtual*/ Time tau() const

{

static rv erv;

TimeSpan t = erv.exp(5);

return t;

}

Generator::detla_y() makes a clone of client and assigns it pClient. pClient
is stamped by (“SysIn”,CurrentTime) and it is sent out of Generator through
out port.

/*virtual*/ void delta_y(PortValue& y)

{

tmValue* pClient = (tmValue*) client.Clone();

//-- (event, time) stamping

pClient->TimeMap.insert(make_pair("SysIn",Devs::TimeCurrent()));
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y.Set(out, pClient);

}

Generator’s init() and delta_x are omitted here because they have no func-
tionality.

Transducer

Transducer’s behavior is pretty much opposite to that of Generator. Figure
4.6(b) shows its state transition diagram. It has an input port in and a buffer
Collector as deque<tmValue*> to collect tmValues coming in. Transducer

also contains a destructor called init().

class Transducer: public Atomic {

protected:

InputPort* in;

deque<tmValue*> Collector;

public:

Transducer(const string& name=""): Atomic(name)

{

CollectStatistics(true);

in = AddIP("in");

}

virtual ~Transducer() { init(); }

Transducer::init() clears all clients in Collector. Transducer::tau()

returns ∞ all the time so it is passive.

/*virtual*/ void init() {

while(Collector.size()>0) // delete all pv in Collector

{

tmValue* pv = Collector[0];

Collector.pop_front();

delete pv;

}

}

/*virtual*/ Time tau() const { return DBL_MAX; }

Transducer::delta_x() castes the input value x.value to pv of tmValue
type. It stamps pv with (“SysOut”,CurrentTime), and pushes pv into Collector.
Since Transducer is always passive, it has no output, and so delta_y() is not
needed here;

/*virtual*/ bool delta_x(const PortValue& x)

{



52 Performance Evaluation

tmValue* pv = dynamic_cast<tmValue*>(x.value);

if(pv)

{

//-- (event, time) stamping

pv->TimeMap.insert(make_pair("SysOut", Devs::TimeCurrent()));

Collector.push_back(pv); // delete contents later in int();

}else

THROW_DEVS_EXCEPTION("Type casting Failed!");

return false;

}

Recall that Transducer collects incoming tmValues stamped with (“SysIn”,arrival-
time) by Generator, (“SysOut”,departure-time) by Transducer. Using these
data, GetPerformance() of Transducers returns {(“Throughput”, value) and
(“Average System Time”, value) } as follows.

• Throughput value defined in Equation (4.1) is the number of tmValues in
Collector divided by the current time.

• System Time defined in Equation (4.3) is the average value of all time
durations (arrival-time, departure-time) for each tmValue in Collector.

The following Transducer::GetPerformance() returns these two indices.

/*virtual*/ map<string, double> GetPerformance() const

{

map<string, double> statistics;

if(m_cs) {

string str = "Throughput";

statistics.insert(make_pair(str,

Collector.size()/TimeCurrent()));

TimeSpan average_st=0;

for(int i=0; i<(int)Collector.size(); i++){

tmValue* pv = Collector[i];

TimeSpan system_t = pv->TimeMap["SysOut"] -

pv->TimeMap["SysIn"];

average_st += system_t;

}

average_st = average_st / (double)Collector.size();

str = "Average System Time";

statistics.insert(make_pair(str, average_st));

}
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return statistics;

}

4.2.2 Utilization in DEVS++

Recall that to get Utilization, we need to accumulate the time intervals of piece-
wise constant time-segments associated with a state. Accumulating the time
intervals can be done using the criterion of either “as long as possible” or “as
short as possible”. “Longer” is preferred over “shorter” because it requires less
computational burden.

If we accumulate the time interval in cases

(1) when the constant segment might change at discrete event points, or

(2) when the simulation run stops

the “as long as” preference might be achieved. For example, in Figure 4.3, times
at t =5, 20, 23, 28, 30 for case (1) (discrete state transitions) and also at t =40
for case (2) (simulation stop time).

DEVS++ calls the following function when_receive_cs for collecting the
time interval of a state segment in cases of above (1) and (2).

void Atomic::when_receive_cs() {

Time dT = TimeCurrent() - t_Lcs;// dT: accumulating time span

if(CollectStatisticsFlag() == true)

{

string state_str = Get_Statistics_s();

if(m_statistics.find(state_str) == m_statistics.end())

m_statistics.insert(make_pair(state_str, 0.0));// new entry

m_statistics[state_str] += dT;//add dT to staying time

}

t_Lcs = TimeCurrent(); // update t_Lcs as the current time.

}

The function description of when_receive_cs() shows that it records and
accumulates the time interval dT from the last time we called when_receive_cs()

to the current time if the flag of collecting statistics is true.
We are using m_statistics (defined as map<string, double>) to collect

statistics. The key value of piece-wise constant segment will be a string returned
from Get_Statistics_s().

If the string of Get_Statistics_s() was not yet registered in m_statistics,
the pair(state_str,0.0) will be newly registered in m_statistics where
state_str=Get_Statistics_s(). The value of m_statistics[state_str] is
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increased by dT. Finally, t_Lcs that is the last time when we calls when_receive_cs()
is updated by the current time.

Every time we need to print the current statistics (such as when we use
the command print p), DEVS++ shows performance indices by calling each
model’s overriding GetPerformance(). The default implementation of Atomic::
GetPerformance() is as follows.

/*virtual*/ map<string, double> Atomic::GetPerformance() const {

map<string, double> statistics;

if(CollectStatisticsFlag()==true) {

for(map<string, double>::const_iterator it = m_statistics.begin();

it != m_statistics.end(); it++)

{

double probability = it->second / TimeCurrent();

if(probability < 0.0 || probability > 1.0) {

THROW_DEVS_EXCEPTION("Invalid Probability!");

}

else

statistics[it->first] = probability;

}

}

return statistics;

}

As we can see, Atomic::GetPerformance() returns a map<string,double>

such that statistics[key] = m_statistics[key]/TimeCurrent().
Thus statistics[key] contains the P (C=key) of Equation (4.6) over the

interval from 0 to the current time.

4.2.3 Average Queue Length in DEVS++

The class Buffer in Ex_ClientServer shows how to collect the average queue
length. The default implementation of Get_Statistics_s() at Atomic is to
return Get_s(). However, Buffer overrides the Get_Statistics_s() such that
it returns the number of jobs waiting in a buffer as follows.

/*virtual*/ string Buffer::Get_Statistics_s() const

{

char tmp[10]; sprintf(tmp, "%d",(int)m_Clients.size());

return string(tmp); // length Only

}
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The class Buffer inherits Atomic::when_receive_cs() shown in the pre-
vious section. But it overrides GetPerformance() function as follows.

/*virtual*/ map<string, double> Buffer::GetPerformance() const

{

map<string, double> statistics;

if(CollectStatisticsFlag()==true) {

TimeSpan E_i=0;// expectation of queue length

for(map<string, double>::const_iterator it = m_statistics.begin();

it != m_statistics.end(); it++)

{

double probability=it->second/TimeCurrent(); // P(i)

if(probability < 0.0 || probability > 1.0) {

THROW_DEVS_EXCEPTION("Invalid Probability!");

}

else{

int i = atoi(it->first.data());

E_i += probability * i;// E(i)=\Sum_{i} i * P(i)

}

}

string str = "Average Q length: ";

statistics.insert(make_pair(str, E_i));

}

return statistics;

}

It makes P (C=i) using m_statistics[i]. Then it makes E(C) by summing
over i*P (i) for all i as defined in Equation (4.10).

4.3 Client-Server System

The example Ex_ClientServer shows all features of performance measurement
introduced in this chapter. This example considers a configuration of n servers
where n can vary from 1 to 5. Figure 4.7 illustrates the case of n = 3.

The entire simulation model consists of the client-server system under test,
named CS, and the experimental frame, named EF, as shown in Figure 4.7.
The sub-components of EF, Generator and Transducer were investigated in
the previous section, so we will discuss the sub-models of CS in the following
sections.
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Figure 4.7: Configuration of Client Server System n = 3

Figure 4.8: Server and Buffer
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4.3.1 Server

Server is a concrete class derived from Atomic. The state transition diagram
of Server can be drawn as shown in Figure 4.8(a). The C++ codes of Server
available in Server.h and are represented by Figure 4.8(a) there is no need for
further explanation here.

4.3.2 Buffer

Buffer is a concrete class derived from Atomic. This class has a single input
port in, an n-vector of input ports pull and an n- vector of output ports out

(in this example, n=3). As member data, phase is a string; m_Clients is a
buffer keeping incoming clients whose type is tmValue; m_OAvail is a vector of
boolean values tracking the availability of servers; m_OSzie stores the number
of connected servers; and send_index is an int which tracks the server index
to which Buffer will send output.

class Buffer: public Atomic {

public:

InputPort* in;

vector<InputPort*> pull;

vector<OutputPort*> out;

protected:

string m_phase;

deque<tmValue*> m_Clients;

vector<bool> m_OAvail;

const int m_Osize;

int send_index;

The function C1 updates member data as a function of an input event x.
If x comes through the input port in, C1 casts the value of x to tmValue and
pushes it back to the buffer m_Clients. Otherwise, x comes through one of
pull ports. So C1 searches the server index i, checking the identity of pull[i]
and the incoming event’s port, and updates m_OAvail[i]=true which marks
the i-th server as being available.

void C1(const PortValue& x)

{

if(x.port == in){ //receiving a client

tmValue* client = dynamic_cast<tmValue*>(x.value);

if(client) {

m_Clients.push_back(client);

} else
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THROW_DEVS_EXCEPTION("Dynamic Casting Failed!");

}

else // receiving a pull signal

{

for(int i=0; i<m_Osize; i++) {

if(x.port == pull[i]) {

m_OAvail[i]= true; // server_i is available

break;

}

}

}

}

The function Matched() first checks to see if there is a waiting client in m_Clients

and then checks to see if there exists an available server from 0 to m_Osize-1. If
a match is found, the function sets m_OAvail[i]=false, remembers the index
i at send_index, then returns true. Otherwise it returns false which means
no match.

bool Matched()

{

if(m_Clients.empty() == false){

for(int i=0; i < m_Osize; i++){// select server

if(m_OAvail[i] == true){// server i is available

m_OAvail[i]=false;//Mark server_i non-available

send_index = i; // remember i in send_index

return true;

}

}

return false;

}else

return false;

}

The function C2 creates an the output event and removes the first client from
m_Clients when C2’s phase is SENDTO.

void C2(PortValue& y) {

if(m_phase == SENDTO){

y.Set(out[send_index], m_Clients[0]);

m_Clients.pop_front();// remove the first client

}

}
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The function init() of Buffer resets phase to IDLE, assigns m_OAvial[i]=true
for all indices, and clears all clients in m_Clients.

/*virtual*/ void init()

{

m_phase = IDLE;

m_OAvail.clear(); // clear first

for(int i=0; i<m_Osize; i++)

m_OAvail.push_back(true); // add variable

while(m_Clients.empty() == false)

{

tmValue* cl = m_Clients[0];

m_Clients.pop_front();

delete cl;

}

}

Buffer’s tau() returns ∞ for IDLE and returns 2.0 for SENDTO.

/*virtual*/ Time tau() const {

if(m_phase == IDLE)

return DBL_MAX;

else

return 2.0;

}

The input transition function delta_x of Buffer updates member data by call-
ing C1(x) and then, if the phase of the server is IDLE, checks the returning value
of Matched(). If the value is true, the phase of the server changes into SENDTO.

/*virtual*/ bool delta_x(const PortValue& x)

{

C1(x);

if(m_phase == IDLE){

if(Matched()){

m_phase = SENDTO;

return true; // reschedule as active

}

}

return false;

}

When the server is ready to exit the SENDTO state, it gets y by calling C2(y),
if Matched() returns true, the phase stays at SENDTO. Otherwise, the phase
returns to IDLE.
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/*virtual*/ void delta_y(PortValue& y) {

C2(y);

if(Matched())

m_phase = SENDTO;

else

m_phase = IDLE;

}

Recall that Buffer class contains the overriding Get_Statistics_s() and
GetPerformance(), which were investigated in Section 4.2.3. For the codes of
Buffer::Get_s(), the reader should refer to Buffer.h.

4.3.3 Performance Analysis

The procedure for constructing the coupled model EF and CS is omitted here
because it is quite straight forward and its schematics were shown in Figure 4.7.

We will analyze change of performance indices by varying the number of
servers. The number of servers used in CS can be varied by passing different
numbers n with the following API, where n is the number of servers desired.

Coupled* MakeTotalClientServerSystem(int n);

The simulation settings we use here are: the simulation ending time=10000;
no display of continuously increasing te, the scale factor is maximum, in which
the clock jumps to the next event time; and there is no display of discrete event
transitions. The following code shows the case where the number of servers is
5.

void main( void ) {

Coupled* Sys = MakeTotalClientServerSystem(5);// n=5

Sys->PrintCouplings();

SRTEngine simEngine(*Sys, 10000); //

simEngine.SetAnimationFlag(false);

simEngine.SetTimeScale(DBL_MAX); //

simEngine.Set_dtmode(SRTEngine::P_NONE);

simEngine.RunConsoleMenu();

delete Sys;

}

Let’s change n sequentially from 1 to 5, and build the various system models,
and try mrun 20 for each configuration. After completion of mrun 20, DEVS++
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Table 4.1: Performance Indices for each n = i of Servers

Performance Indices n=1 n=2 n=3 n=4 n=5

Queue Length 589.00 173.79 1.65 0.71 0.58
System Time 2,927.33 873.86 18.30 13.54 12.86
Throughput 0.08 0.17 0.20 0.20 0.20
Utilization 0.83 0.83 0.67 0.50 0.40

Utilization is measured by the average utilization of all servers for 2 ≤ n.
For example, Utilization when n=3 means

∑
i=1,2,3Utilization(i)/3.

summarizes the performance indices to the console. 2 Table 4.1 shows perfor-
mance indices for each configuration and Figure 4.9s show the trend of perfor-
mance changes as n changes.

Average Queue Length and Average System Time are drastically reduced
until n reaches 3. Average Throughput increase up to 0.2 jobs/time-unit at
n=3 and then there is no increase at n=4 and 5. The reason why Throughput
doesn’t increase after n=3 might be that there is lack of client arrival from
outside the system. We can find a similar phenomenon in Utilization which
doesn’t decrease when n=2 but starts to decrease when n=3.

Another interesting trend is that both utilizations at n=1 and n = 2 are
equal to about 80%, not 100%, even though Average Queue Length is 589
and 173 and Average System Time is 2,927.33 and 873.86 time-units, respec-
tively. The reason seems to be caused by Buffer::tau(SENDTO)=2. Server’s
P (C =Idle) is about 0.2, which makes sense when considering Server::tau(Busy)=10.
In other words, except for the client transmission time from Buffer to Server,
Server keeps working all the time.

The following screen shot illustrates the average value and its 95% confidence
interval for each statistical item listed where the number of servers is 5. We can
find uneven utilizations in this screen shot. For example, P (C =Busy)=0.61 for
SV0 server, while P (C =Busy)=0.17 for SV4 server. This phenomenon is caused
by the searching order in the Buffer::Matched() function in which checking
for the availability of servers starts from 0 index all the time. We may need to
modify the searching order if we want to utilize the servers more evenly.

Note that in order to have a confidence interval for mu, you must have run
a large number of simulations.[Zei76, LK91] It would help the analyst to know
how many simulations were run to produce these results.

...

2The log file “devspp log.txt” collects also the same performance indices. But watch

out that the old devspp log.txt will be over written by the new one every time we execute

DEVS++.
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Figure 4.9: Performance Indices
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============= Total Performance Indices =========

CSsystem.CS.BF

Average Q length: : 0.575612, 95% CI: [0.560994, 0.590231]

CSsystem.CS.SV0

Busy: 0.61411, 95% CI: [0.611001, 0.617219]

Idle: 0.38589, 95% CI: [0.382781, 0.388999]

CSsystem.CS.SV1

Busy: 0.525135, 95% CI: [0.520404, 0.529867]

Idle: 0.474865, 95% CI: [0.470133, 0.479596]

CSsystem.CS.SV2

Busy: 0.413587, 95% CI: [0.408219, 0.418955]

Idle: 0.586413, 95% CI: [0.581045, 0.591781]

CSsystem.CS.SV3

Busy: 0.28686, 95% CI: [0.279344, 0.294376]

Idle: 0.71314, 95% CI: [0.705624, 0.720656]

CSsystem.CS.SV4

Busy: 0.16772, 95% CI: [0.159812, 0.175628]

Idle: 0.83228, 95% CI: [0.824372, 0.840188]

CSsystem.EF.Trans

Average System Time: 12.8643, 95% CI: [12.8222, 12.9064]

Throughput: 0.20068, 95% CI: [0.198181, 0.203179]

========== Simulation Run Completed! ==========
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Building DEVS++

The directory structure of DEVS++ verion 1.4.2 is as follows.

+-DEVSpp

+- Doc

+- Examples

...

This appendix covers the three folders: DEVSpp, DEVSpp/Doc, and DEVSpp/Examples.
DEVSpp contains header files and cpp source files of DEVS++ as well as the
project file and the solution file of Microsoft Visual Studio. DEVSpp/Doc contains
this document file. DEVSpp/Examples includes example folders: Ex_ClientServer,
Ex_Monorail, Ex_PingPong, Ex_Template, Ex_Timer, Ex_VendingMachine.

All of examples are addressed in this document except Ex_Template which
provides a template whose settings can be used as the starting point for the
reader’s own project (using copying and modifying). The source code used in
Ex_Template is the same as in Ex_PingPong.

As of May 3, 2009, we had tested the compilation of DEVS++ only in
Microsoft Visual Studio(MVS) 2005TM.

A.1 Using Microsoft Visual Studio 2005TM

If you open the solution file of DEVSpp/DEVSpp.sln, Visual Studio 2005TM opens
the associated project files including DEVSpp.vcproj as well as those of the
example projects as shown in Figure A.1.

You can open each example solution individually. For example, if you open
DEVSpp/Examples/Ex_PingPong/Ex_PingPong.sln file, you can see that only
DEVSpp project and Ex_PingPong project are opened in Solution Explorer win-
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Figure A.1: Screen Capture of Visual Studio 2005TM when opening DE-
VSpp/DEVSpp.sln

dow of Visual Studio 2005TM. To run each example, we should build DEVSpp
first and then build the example project.

In order to run the examples provided in DEVSpp/Examples folder, we don’t
have to change the compile and build options at all. But if you want to know
the settings inside, the following information will be useful.

There are two different ways to build DEVSpp library in verion 1.4.2: “De-
bug” & “Release”. Each configuration will create its own folder, and there will
be DEVSpp.dll and DEVSpp.lib

The special settings of Configuration Properties for DEVS++ are:

1. General/Configuration Type: Dynamic Library (.dll)

2. C/C++

• Preprocessor/Preprocessor Definitions:
WIN32;DEVSpp_EXPORT; for all configurations
_DEBUG; for Debug configurations.
NDEBUG; for Release configurations.

I believe that the reader will be unlikely to change the DEVSpp.vcproj file.
But the reader could make her or his own examples. The special settings of
Configuration Properties for Ex_* examples are:
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Figure A.2: Change Debugger Type

1. General/Configuration Type: Application (.exe) .

2. C/C++

• General/Additional Include Directories: ../../../DEVSpp

• Preprocessor/Preprocessor Definitions:
WIN32; for all configurations.
_DEBUG; for Debug configurations.
NDEBUG; for Release configurations.

3. Linker/General/Additional Library Directories:
$(SolutionDir)$(ConfigurationName) for all configurations.

A.1.1 When debugging through breakpoints in DEVS++

is failed

When I used MSV 2005, I found that I could not get into breakpoints at source
codes DEVS++ sometimes. We may be able to search the internet for how to
resolve this situations. What I found so far is that the way to build debugging
information from C++ codes for MSV seems little bit unstable.

To make MSV behave correctly, one tip I usually use is to change debugger
type between “Auto” and “Managed Only” in the property dialog as shown in
Figure A.2.

Another tip I would like to give readers is that when you make your own
project (or solution), you should make sure that project dependency of your own
project has a dependency on DEVSpp. That can be done by ”Project-¿Project
Dependency...” menu item.
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History and Plan

B.1 Revision History

B.1.1 Version 1.4.2

Library

1. Simplified build options as two: Debug (dll) and Release (dll)

2. Assumed that the include path is DEVSpp directory.

3. Changed SRTEngine’s dtmode command to show rel and abs.

Manual

1. Added the definition of Deterministic and Nondeterministic DEVSs in
Section 1.1.

2. Added Appendix History and Plan.

3. Added indices.

B.1.2 Version 1.4.1

Library

1. Supported four different build options: debug dll, debug static, release dll,
release static

2. Assumed that the include path is the parent of DEVSpp directory.
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Manual

1. Released the first manual for DEVS++.

2. Contents: Chapter 1. Introduction to DEVS; Chapter 2. Library Struc-
ture; Chapter 3. Simple Examples; Chapter 4. Performance Evaluation;
Appendix A. Building DEVS++;
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B.2 Plan

B.2.1 Short Term

1. Supporting gcc++ build.

2. Changing realtime advance mechanism of SRTEngine.

3. Supporting a non-thread engine.

4. Supporting multiple output events.

B.2.2 Mid Term

1. Supporting variable structuring DEVS.

2. Supporting distributed simulation.

B.2.3 Long Term

1. Supporting reachability-based verification engine.

2. Supporting animation and visualization.
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